PowerSpectrum¶
- class rascaline.utils.PowerSpectrum(calculator_1: CalculatorBase, calculator_2: CalculatorBase | None = None, types: List[int] | None = None)¶
Bases:
Module
General power spectrum of one or of two calculators.
If
calculator_2
is provided, the invariants \(p_{nl}\) are generated by taking quadratic combinations ofcalculator_1
’s spherical expansion \(\rho_{nlm}\) andcalculator_2
’s spherical expansion \(\nu_{nlm}\) according to Bartók et. al.\[p_{nl} = \rho_{nlm}^\dagger \cdot \nu_{nlm}\]where we use the Einstein summation convention. If gradients are present the invariants of those are constructed as
\[\nabla p_{nl} = \nabla \rho_{nlm}^\dagger \cdot \nu_{nlm} + \rho_{nlm}^\dagger \cdot \nabla \nu_{nlm}\]Note
Currently only supports gradients with respect to
positions
.If
calculator_2=None
invariants are generated by combining the coefficients of the spherical expansion ofcalculator_1
. The spherical expansions given as input can only berascaline.SphericalExpansion
orrascaline.LodeSphericalExpansion
.- Parameters:
calculator_1 – first calculator
calculator_1 – second calculator
types – List of
"neighbor_type"
to use in the properties of the output. This option might be useful when running the calculation on subset of a whole dataset and trying to join along thesample
dimension after the calculation. IfNone
, blocks are filled with"neighbor_type"
found in the systems.
- Raises:
ValueError – If other calculators than
rascaline.SphericalExpansion
orrascaline.LodeSphericalExpansion
are used.ValueError – If
"max_angular"
of both calculators is different.
Example¶
As an example we calculate the power spectrum for a short range (sr) spherical expansion and a long-range (lr) LODE spherical expansion for a NaCl crystal.
>>> import rascaline >>> import ase
Construct the NaCl crystal
>>> atoms = ase.Atoms( ... symbols="NaCl", ... positions=[[0, 0, 0], [0.5, 0.5, 0.5]], ... pbc=True, ... cell=[1, 1, 1], ... )
Define the hyper parameters for the short-range spherical expansion
>>> sr_hypers = { ... "cutoff": 1.0, ... "max_radial": 6, ... "max_angular": 2, ... "atomic_gaussian_width": 0.3, ... "center_atom_weight": 1.0, ... "radial_basis": { ... "Gto": {}, ... }, ... "cutoff_function": { ... "ShiftedCosine": {"width": 0.5}, ... }, ... }
Define the hyper parameters for the long-range LODE spherical expansion from the hyper parameters of the short-range spherical expansion
>>> lr_hypers = sr_hypers.copy() >>> lr_hypers.pop("cutoff_function") {'ShiftedCosine': {'width': 0.5}} >>> lr_hypers["potential_exponent"] = 1
Construct the calculators
>>> sr_calculator = rascaline.SphericalExpansion(**sr_hypers) >>> lr_calculator = rascaline.LodeSphericalExpansion(**lr_hypers)
Construct the power spectrum calculators and compute the spherical expansion
>>> calculator = rascaline.utils.PowerSpectrum(sr_calculator, lr_calculator) >>> power_spectrum = calculator.compute(atoms)
The resulting invariants are stored as
metatensor.TensorMap
as for any other calculator>>> power_spectrum.keys Labels( center_type 11 17 ) >>> power_spectrum[0] TensorBlock samples (1): ['system', 'atom'] components (): [] properties (432): ['l', 'neighbor_1_type', 'n_1', 'neighbor_2_type', 'n_2'] gradients: None
See also
If you are interested in the SOAP power spectrum you can the use the faster
rascaline.SoapPowerSpectrum
.Initialize internal Module state, shared by both nn.Module and ScriptModule.
- property name¶
Name of this calculator.
- compute(systems: IntoSystem | List[IntoSystem], gradients: List[str] | None = None, use_native_system: bool = True) TensorMap ¶
Runs a calculation with this calculator on the given
systems
.See
rascaline.calculators.CalculatorBase.compute()
for details on the parameters.- Raises:
NotImplementedError – If a spherical expansions contains a gradient with respect to an unknwon parameter.
- forward(systems: IntoSystem | List[IntoSystem], gradients: List[str] | None = None, use_native_system: bool = True) TensorMap ¶
Calls the
PowerSpectrum.compute()
function.This is intended for
torch.nn.Module
compatibility, and should be ignored in pure Python mode.